

Physiology of training and workouts

David Pyne Physiology Australian Institute of Sport

2012 ASCTA Convention Broadbeach, QLD

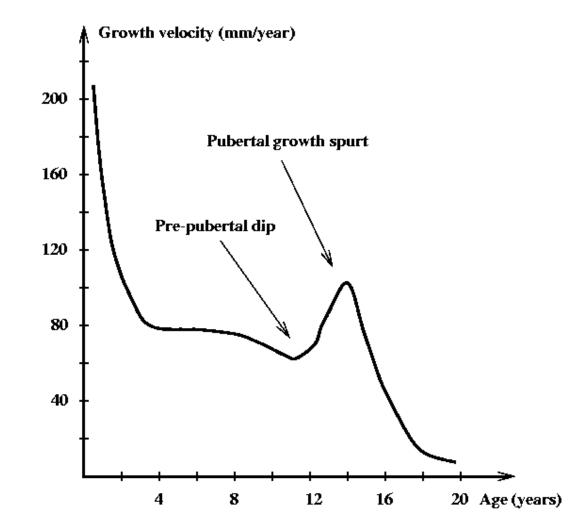
(c) Australian Sports Commission, All Rights Reserved, 2012

<u>Outline</u>

- Long-term swimmer development models
- Physiological models of exercise performance

Coach's and Scientist's Perspective

- Effective Planning
- Good Organisation
- Preparation Phase
- Endurance Phase
- Tapering
- Competition
- Recovery


- Energy Systems
- Physiological Models A Contemporary Approach
- Periodisation and Conditioning
 - Periodisation
 - Macrocycle
 - Microcycle

© Australian Sports Commission, All Rights Reserved, 2012.

Human growth curve

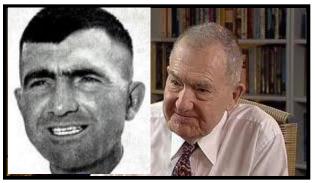
Evidence-Based Research

Level I: At least one properly designed <u>randomised controlled trial</u>.
Level II-1: Well-designed controlled trials without <u>randomization</u>.
Level II-2: Well-designed <u>cohort</u> or <u>case-control</u> analytic studies.
Level II-3: <u>Multiple time series</u> with or without the intervention.
Level III: <u>Opinions</u> of respected authorities, based on clinical experience, descriptive studies, or expert committees.

<u>Long-term swimmer</u> <u>development models</u>

- Traditional Model of Athlete Development
- Carlile, *Carlile on Swimming (AUS, 1963)*
- Bompa, Periodisation of Training (Canada, 1970's -)
- Counsilman, *Residual Effects of Training* (USA, 1991)
- Balyi, *Long-term Athlete Development Model* (Canada, 1990's)
- Richards, Multi-year Age-group Swimmer Development Model (AUS, 2000's)
- Issurin, *New Horizons for Training Periodization* (Israel, 2010)

<u>Traditional pyramid model of</u> <u>sports development</u>

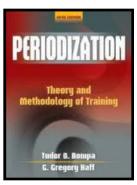

(adapted from Tinning, Kirk and Evans, 1993)

Forbes Carlile

- 'Carlile on Swimming' (1963)
- Philosphy of speed through endurance.
- Pioneered interval training and tapering.
- Heart rate monitoring, log books, blood tests, twoand four-beat kicking.
- Lane ropes, pace clock, nutrition, recovery, drugs in sport, swimsuits.
- *"Used his skills, experiences and opportunities to improve the lives of swimmers and swimming coaches around the world".*

http://www.amazon.co.uk/FORBES-CARLILE-SWIMMING-Forbes-Carlile/dp/B000LRA2CS

Tudor Bompa


Bompa (1996) identified a two phase long termperiodization model, including the generalized (6 to 14 years) and specialized (15 + years) phases.

'Theory and Methodology of Training'

Each phase is broken down into two stages.

- Generalized phase comprising the initiation stage (6 to 10 years) and the athletic formation stage (11 to 14 years).
- Specialized phase are referred to as specialization (15 to 18 years) and high performance (19+ years) stages.

<u>James 'Doc' Counsilman</u> <u>Residual effects of training (USA, 1991)</u>

PEAK ANAEROBIC METABOLIC PRODUCTIVITY Rate of Loss: days to weeks

PEAK AEROBIC METABOLIC PRODUCTIVITY Rate of Loss: weeks to months

CARDIOVASCULAR/RESPIRATORY SYSTEM (Capillary Density, Heart Parameters) Rate of Loss: months to years

MUSCULOSKELETAL SYSTEM (Strength Abilities: Maximal Strength, Strength Endurance Speed Strength) Rate of Loss: years

NEUROMUSCULAR SYSTEM (Coordination, Movement Skill, Technical Preparation) Rate of Loss: years to indefinitely

Figure 1. Model depiciting theoretical magnitude of training residuals for different physical systems and their rate of loss.

James 'Doc' Counsilman

Science of Swimming' (1968)

Counsilman, Residual effects of training (USA, 1991)

Factor	Influence
Duration before cessation	Longer training longer residuals
Load before cessation	Highly concentrated shorter residuals than complex-multi component
Age and duration of career	Older experienced athletes longer residuals
Training after concentrated training	Stimulation prolongs residuals prevents detraining
Biological nature of abilities	Strength & aerobic longer residuals; anaerobic shorter residuals

James 'Doc' Counsilman

Counsilman, J. and B.Counsilman (1991). J. Swimming Research 7(1):5-12.

Long-term athlete development stages

Early Specialisation

Late Specialisation

FUNdamental

Training to Train

Training to Compete

Training to Win

Retaining

FUNdamental

Learning to Train

Training to Train

Training to Compete

Training to Win

Retaining

Istvan Balyi

Balyi, I., and Hamilton, A. Key to Success: Long-term Athlete Development. Sport Coach, Canberra, Australia. Vol.23. No.1. Autumn 2000. pp. 30-32.

Learning and training to train

Learning to Train

- Boys aged 9–12 and girls aged 8–11 y.
- Learn all fundamental sports skills.
- Further develop movement skills, strength and endurance
- Learn general sports skills
- Introduce basic flexibility exercises
- Agility, quickness and change of direction
- Warm-up, cool-down, stretching, hydration, nutrition and recovery
- Ratio of 70:30 training/competition

Training to Train

- Boys aged 12–16 and girls aged 11–15 y.
- Aerobic conditioning and fundamental movement skills.
- Further develop speed and sport-specific skills
- Learn correct weightlifting techniques
- Dryland work, optimise nutrition and hydration; mental preparation; how and when to taper and peak
- Establish training and competition routines
- 60% training to 40% competition ratio

Learning and training to win

Learning to Win

- Boys aged 16–18 and girls aged 15– 17 y.
- Optimise fitness preparation, sport/event-specific skills and performance.
- 50% technical, tactical skills, fitness
- 50% competition-specific training
- Learn under different conditions
- Competition modelling
- Individual fitness and recovery programmes
- Psychological preparation

Training to Win

- 17+ yr (females)/18+ yr (males)
- Assumes all relevant capacities have been developed
- Focus of selected competitive events
- Planned rest breaks to avoid burnout and injury
- Increase in sport-specific training loads
- Multi-periodisation approach developed.

Ralph Richards Multi-Year Age-Group Swimmer Development Model

PHYSICAL DEVELOPMENT

- Aerobic system develops most rapidly <12 yr
- <16 yr biological development whereas success at the senior elite level is the result of many factors
- late maturers tend to stay in the sport longer
- sporting preparation that coincide with developmental stages will result in better long-term improvements
- endurance-based training may be the single most important component of success
- capacities for effort and physical & psychological recovery must be developed concurrently for long-term success
- physical preparation is a major prerequisite for skill development

Ralph Richards

Ralph Richards Multi-Year Age-Group Swimmer Development									
Model									
Age	8±	8 ± 1 yr		$10 \pm 2 \text{ yr}$		Girls 12 ± 1,		14 ± 2 yr	
					Boys 13 ± 1 yr				
Training	2 yr		2 yr		2-3 yr		3 – 5 yr		
period									
Pool	2-4 sessions, 40-60 min		3-5 sessions, 60-75 min		4-6 sessions, 75-90 min		6-10 sessions, 90-120 min		
Land	1-2 sessions, 15-25 min		2 sessions, 20-30 min		2-3 sessions, 30-45 min		2-3 sessions, 45-60 min		
Volume / Session	0.75 - 2 km		2 - 3.5 km		3.5 - 6 km		4 – 8 km		
Yearly Training	24 - 30 weeks		30 - 36 weeks		36 - 44 weeks		40 - 46 weeks		
Volume (Pool)	75 -250 km		250-500 km		500-1000 km		1000-2500 km		
Technique	Technique	Strength	Technique	Strength	Technique	Strength	Technique	Strength	
and	all strokes	Movement	Racing skills	Increase	Increase	Musculo-	Increase	Periodize	
Strength	Racing	coordination	Aerobic	strength to	training	skeletal	volume and	strength	
Objectives	skills –	Group	Activities	body mass	Volume	assessment	intensity of	Transfer	
	starts,	activities	Speed <50m	ratio	Racing skills	Body weight	training	power into	
	turns, pace		Acceleration	Even	Speed	exercises	Integrated	swimming	
	Aerobic		Greater mix	development	(<50m)	Simple gym	model	Cross-	
	endurance		of training	of muscle	Acceleration	Flexibility	Specialisation	training	
	Speed at		methods	groups	Interval	Body	Perfect	Maintain	
	25-50m			Core	training	strength	technique	flexibility	
	Simple			strength			and skills		
	training								
	sets and								
	games								

Issurin, New horizons for training periodization (Israel, 2010)

Component	Content
Multi-year preparation	Long-lasting systematic athlete training composed of 2 and 4 yr cycles
Macrocyle (months)	Large size training cycle (annual) with preparatory, competition and transition periods
Mesocycle (weeks)	Medium size training cycle consisting of a number of microcycles
Microcycles (days)	Small cycle typically 1 week
Workout (h/min)	Single session

Vladimir Issurin

- History of periodization
- Principles of periodization
- Major limitations of traditional model
- Alternative models of periodization
- Linear and non-linear periodization
- Block periodization

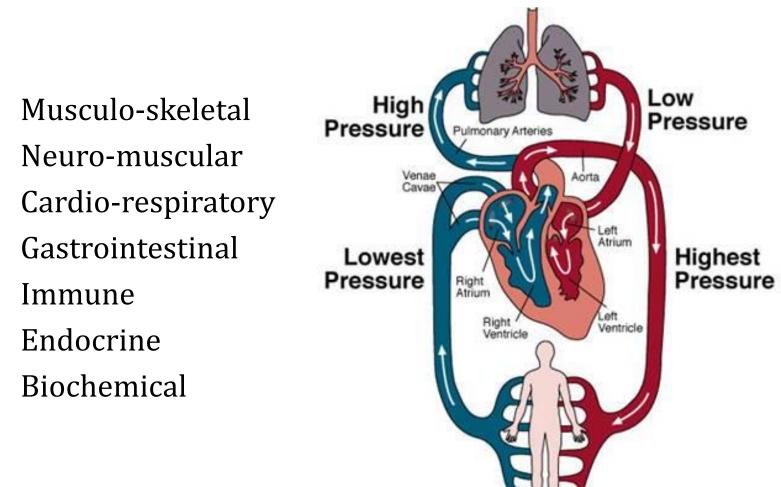
Sports Med. 2010, 40(3):189-206.

Physiological Models of Exercise Performance

- Three energy systems model (various, 1970-1990's)
- Training for capacity or power/utilization (Olbrecht, Rushton, 1990's -)
- Noakes, Physiological systems model (South Africa, 2000)
- Noakes, Central Governor model (South Africa, 2004-)
- Smith, Framework for understanding training (Canada, 2003)
- Paton and Hopkins, Interval training (New Zealand, 2004)
- Seiler, Best practice for training intensity and distribution (Norway, 2010).

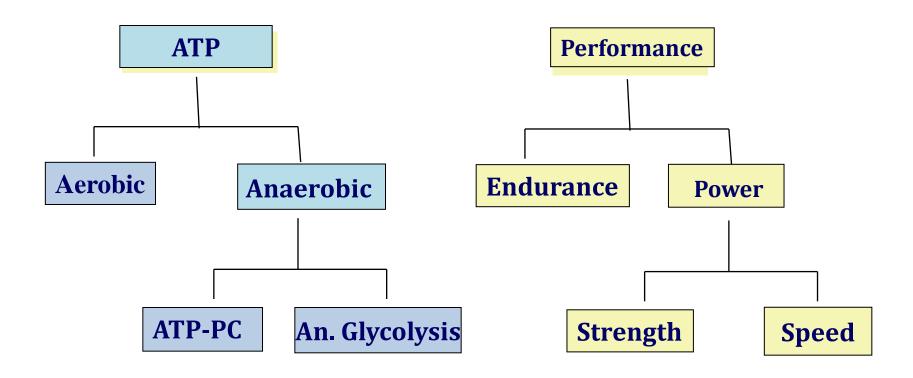
•

•

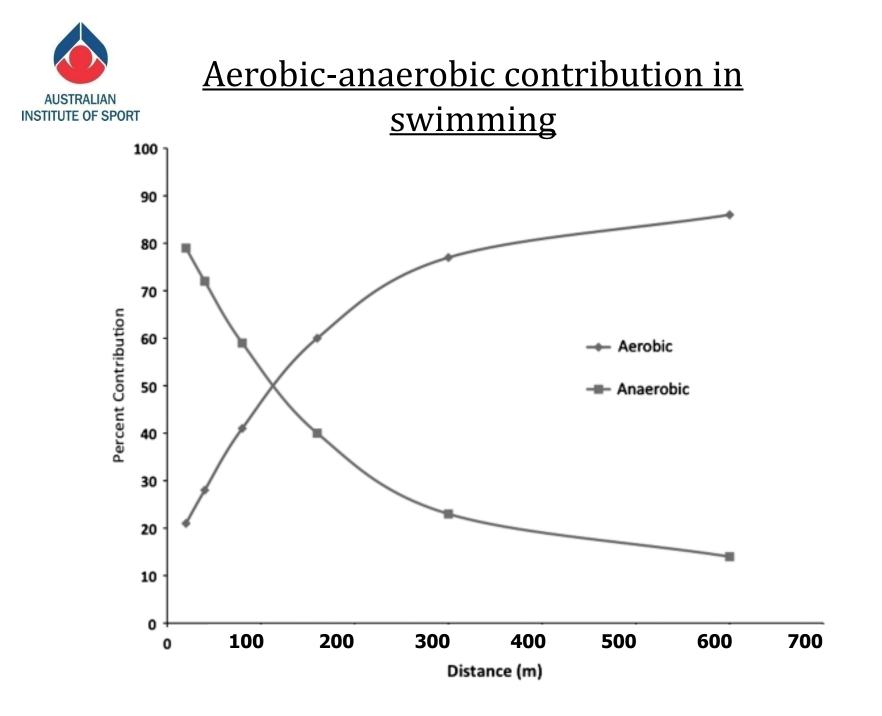

ullet

•

•


•

<u>Three energy systems model</u> <u>Physiological systems</u>



<u>Three Energy System Model</u> (various 1970-1990's)

© Australian Sports Commission, All Rights Reserved, 2012

Training for capacity or power/utilisation

- Olbrecht (2002) 'The Science of Winning' Jan Clive Bob
- Rushton (2012)

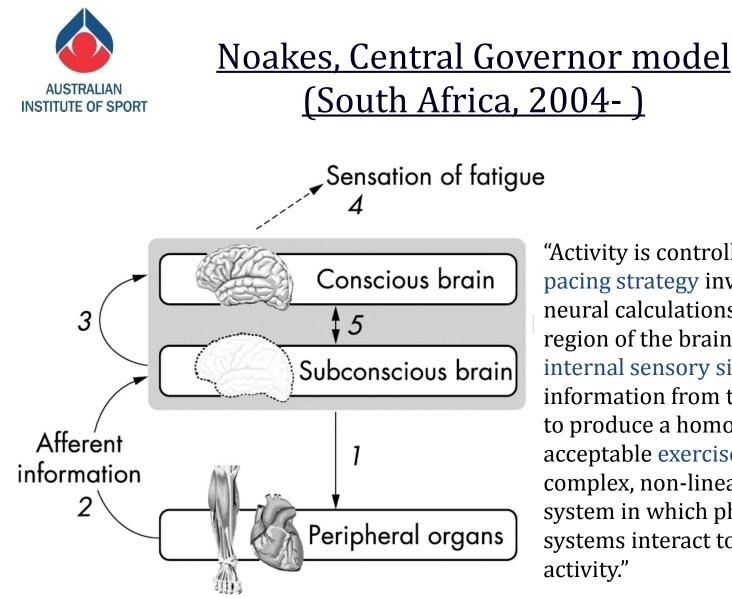
http://www.smashwords.com/extreader/read/146070/1/selected-works-athimble-half-full-and-other-thoughts-on-swimming

- Bowman (2011 ASCA) 'Training for Capacity or Utilization.'
 - '<u>capacity</u>' training develops how good the swimmer can be , 'building the inventory', 'operates within the swimmer's capability', long-term,
 - <u>'utilization</u>' training develops how good they are now, selling inventory, getting sales, and getting them NOW!, operates at the edge the swimmer's capability, shortterm.
 - "utilization sacrifices potential for actual:
- Rushton "make sure your cup is as big as possible and full to the brim. That way, when it's time to do the sharpening/utilization/power training, you have sufficient reserves of capacity to fuel your endeavour and enough left over to lay the foundations for the next seasonal thrust."

Biochemical model

Simplified model of the adenosine monophosphate kinase (AMPK) and calcium–calmodulin kinase (CaMK) signaling pathways, as well as their similar downstream target, the peroxisome proliferator-activated receptor-g coactivator-1a (PGC-1a). This "master switch" is thought to be involved in promoting the development of the aerobic muscle phenotype. High- intensity training appears more likely to signal via the AMPK pathway, while high-volume training appears more likely to operate through the CaMK pathway. ATP, adenosine triphosphate; AMP, adenosine monophosphate; GLUT4, glucose transporter 4; [Ca21], intramuscular calcium concentration.

Laursen, Scand. J. Sci. Med. Sport, 2010.


<u>Noakes, Physiological systems model</u> (South Africa, 2000)

- The cardiovascular / anaerobic model
- The energy supply / energy depletion model
- The muscle recruitment (central fatigue) / muscle power model
- The biomechanical model
- The psychological model

Scand J Med Sci Sports. 2000 Jun;10(3):123-45.

Tim Noakes

"Activity is controlled as part of a pacing strategy involving active neural calculations in a "governor" region of the brain, which integrates internal sensory signals and information from the environment to produce a homoeostatically acceptable exercise intensity. A complex, non-linear, dynamic system in which physiological systems interact to regulate

Noakes and St Clair Gibson, Br J Sports Med 2004;38:797-806

Smith, Framework for understanding

training (Canada, 2003)

Dave Smith

Athletic Performance

Physiology	Biomechanics	Psychology	Tactics	Health
poor- optimal	poor- optimal	poor- optimal	poor- optimal	poor- optimal
 Volume Intensity Recovery Weight training Body composition 	 Technique Repetition ability Equipment 	 Emotional stability Confidence Discipline Cognitive stress Social 	Competition analysis	 Health Sickness Fatigue Work School Finances

Sports Med. 2003;33(15):1103-26.

Paton and Hopkins, Interval training (New Zealand, 2004)

- Meta-analysis of 22 high-intensity training studies
- Intervals (supramaximal, maximal, submaximal)
- Resistance (explosive, plyometrics, weights)

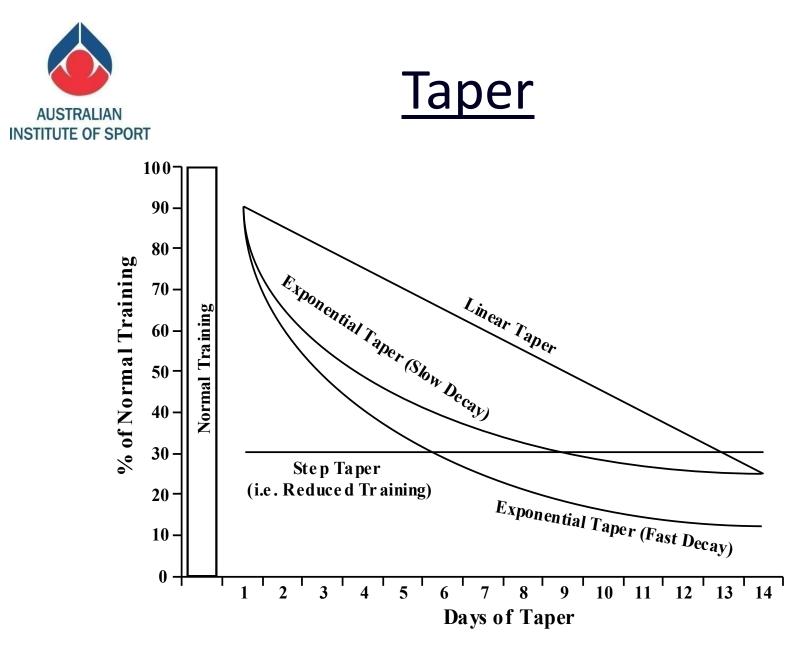
Will Hopkins

- Conclusion: Shorter events improved most by supramaximal intervals (~4%) and explosive sports-specific resistance training (4-8%).
- Conclusion: Longer events improved most by maximal and supramaximal intervals (~6%) while resistance training had smaller effects (~2%)
- **Recommendation:** Add explosive resistance and high-intensity interval training to generally low-intensity training program.

Sportscience 8, 25-40, 2004.

<u>Seiler, Best practice for training intensity</u> and distribution (Norway, 2010)

- Elite athletes typically undertake 10-13 sessions/wk with 80% training at low intensity and 20% high intensity intervals.
- Self-organize toward a high-volume training with careful application of high-intensity training
- Training studies are not definitive but 80/20 model gives good results
- Both low and high intensity training generate overlapping physiological profiles i.e. complementary in nature
- Endurance base a pre-condition for high intensity intervals


Int J Sports Physiol Perform 2010, 5:276-291.

Stephen Seiler

Pyne, O'Reilly and Mujika, J. Sports Sci, 2009:195-202.

(c) Australian Sports Commission, All Rights Reserved, 2012

Physiology of training and workouts

David Pyne Physiology Australian Institute of Sport david.pyne@ausport.gov.au

(c) Australian Sports Commission, All Rights Reserved, 2012